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Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions
via the McMurchie-Davidson recursion formula
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A convenient formalism is developed for the evaluation of atomic integrals composed of a hybrid Gaussian
type function and plane-wave~GTF-PW! basis set, based upon the recursion scheme proposed by McMurchie
and Davidson@L. E. McMurchie and E. R. Davidson, J. Comput. Phys.26, 218 ~1978!# which was originally
for Gaussian type basis functions. We show that revisions of recursion relations in the original article are
necessary in order to allow systematic production of overlap, kinetic energy, nuclear attraction, and electron
repulsion integrals in compact forms. Involving easy calculation of complex incomplete gamma functions, the
recursion relations enable the use of hybrid GTF-PW basis functions with arbitrarily large angular momentum.
This basis function can be applied to the first-principle calculation for solids involving localized electron
orbitals.
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I. INTRODUCTION

For several decades, the Cartesian Gaussian type fun
~GTF! has achieved its popularity as a basis function
localized electron orbitals owing to its simplicity in compu
ing the atomic integrals within the framework of the line
combination of atomic orbitals. Among some convenie
methods contrived for computing GTF atomic integra
@1–6#, one of the most efficient algorithms has been s
gested by McMurchie and Davidson~MD! @1#. The MD
scheme has an attractive feature in its recursion relation
terms of auxiliary functions, which enables the generation
GTF atomic integrals systematically with arbitrarily large a
gular momentum. Besides, the MD formula is also pra
cally useful in the evaluation of sophisticated atomic in
grals such as two-electron integrals involvingr 12 @7#, and
three-electron integrals@8#. For these reasons, the M
method has been widely used in currentab initio program
packages.

On the other hand, the plane-wave~PW! basis function
has been successful for describing delocalized Bloch orb
in the condensed phase, such as periodic crystals and m
lic solids. PW’s as a basis set have advantages in sim
formulas of atomic integrals and its derivatives, a
they are suitable for molecular-dynamics calculations. In t
context, it is a natural choice to adopt both localized G
and delocalized PW’s as basis functions at the same
@9–11#. Thus, it is encouraging to set up a systematic tre
ment for the evaluation of atomic orbitals in hybrid GT
PW’s.

The aim of the present report is the generalization of t
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efficient MD formalism to hybrid GTF-PW basis function
of the form

xA5 )
k5x,y,z

~r k2RAk!
nk exp$2aA~r2RA!2%

3exp$ iKA•~r2RA!%

5 )
k5x,y,z

~r k2RAk!
nk

3expF2aAH r2S RA1
iKA

2aA
D J 2GexpS 2

uKAu2

4aA
D ,

~1!

whereaA gives the Gaussian exponent andr5(r x ,r y ,r z),
RA5(RAx ,RAy ,RAz), and KA5(KAx ,KAy ,KAz) denote the
electronic Cartesian coordinate space, the center coordi
of GTF, and the PW vector, respectively. In Eq.~1!, we note
that settingKA50 reduces to conventional GTF, while se
ting nk5aA50 corresponds to the PW function.

In Sec. II, we describe the way to obtain desired atom
integrals from one- and two-electron basic integrals. As
example, we give the expressions of overlap, nucle
attraction, and electron-repulsion integrals. The recurs
relations for auxiliary functions which is necessary
nuclear-attraction and electron-repulsion integrals, are a
shown. In Sec. III, we explain the prescriptions to obta
their derivatives. Finally, in Sec. IV, we give some remar
on the applications of the present work to be expected in
future.

II. EXPANSION OF ATOMIC INTEGRALS

In this section, we seek convenient formulas for the o
electron integral
©2001 The American Physical Society06-1
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I 15E drxA~r !* u~r !xB~r !, ~2!

and the two-electron integral

I 25E E dr1dr2xA~r1!* xB~r1!u~r1 ,r2!xC~r2!* xD~r2!.

~3!

To begin with, let us introduce the product of two bas
functions in Eq.~1!,

xA* xB5EAB exp$ i ~KA•RA2KB•RB!%

3 )
k5x,y,z

~r k2RAk!
nk~r k2RBk!

mk

3exp$2aP~r2P!21 iK•r%, ~4!

where we have definedK52KA1KB , aP5aA1aB ,
P5(aARA1aBRB)/aP , and EAB5exp(2aAaBuRA
2RBu2aP). Following the procedure similar to MD, we als
introduce the functionLNk

as anNkth order polynomial of

r k ,

LNk
~r k2Pk ;ap!exp$2aP~r2P!21 iK•r%

5~]/]Pk!
Nk exp$2aP~r2P!21 iK•r%. ~5!

Now, we consider the expansion of

~r k2RAk!
nk~r k2RBk!

mk5 (
Nk50

nk1mk

dNk

nk ,mkLNk
~r k2Pk ;ap!.

~6!

Using the nature of

~r k2RAk!LNk
5NLNk211~Pk2RAk!LNk

1
1

2ap
LNk11 ,

~7!

we are able to use the recursion relations to obtain the c
ficient dNk

nk ,mk by

dNk

nk11,mk5~2ap!21dNk21
nk ,mk1~Pk2RAk!dNk

nk ,mk

1~Nk11!dNk11
nk ,mk , ~8!

dNk

nk ,mk11
5~2ap!21dNk21

nk ,mk1~Pk2RBk!dNk

nk ,mk

1~Nk11!dNk11
nk ,mk , ~9!

with the initial conditiond0
0051. Equations~8! and ~9! re-

main the same as those defined in the original article@1#.
Using the relation of Eq.~6!, we are left with the evaluation
of the basic integrals for one- and two-electron integrals
05670
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@NxNyNzuu#5E dru~r ! )
k5x,y,z

~]/]Pk!
Nk

3exp$2aP~r2P!21 iK•r%, ~10!

@NxNyNzuuuMxM yMz#5E dr1dr2u~r1 ,r2!

3 )
k5x,y,z

~]/]Pk!
Nk~]/]Qk!

Mk

3exp$2aP~r12P!2

2aQ~r22Q!21 i ~K•r11L•r2!%,

~11!

respectively, where we have definedL52KC1KD , aQ
5aC1aD , andQ5(aCRC1aDRD)/aQ .

A. Overlap integrals

By settingu(r ) to 1 in Eq.~10!, the basic integral of the
overlap integral is given by

@NxNyNzu1#5S p

aP
D 3/2

expH 2
K2

4aP
J )

k5x,y,z
~ iK k!

Nk.

~12!

We note that since Eq.~12! depends onNk , the overlap
integrals will need the summation as toNk in Eq. ~6! ~in
contrast to the case of the pure GTF basisK50, where only
the terms forNk50 survive!.

B. Nuclear-attraction integrals

By settingu(r ) to r C
21 in Eq. ~10!, the basic integral of

the nuclear-attraction integral is expressed by

@NxNyNzu r C
21#5S 2p

aP
DRNx ,Ny ,Nz

~aPPC2!, ~13!

whereC is the nuclear coordinate, and

RNx ,Ny ,Nz
~aPPC2!5~]/]Px!

Nx~]/]Py!Ny

3~]/]Pz!
NzF0~aPPC2!, ~14!

where

F0~T!5E
0

1

dt exp~2t2T!, ~15!

PC25~ P̃x2Cx!
21~ P̃y2Cy!21~ P̃z2Cz!

2, ~16!

and

P̃5
aA„RA2~ iKA/2aA!…1aB„RB1~ iKA/2aA!…

aA1aB
. ~17!

In order to computeRNx ,Ny ,Nz
for a set of$Nk%, we have to

derive a table of allRNx ,Ny ,Nz
up to maximum angular mo

ment numberNx1Ny1Nz . Thus, we introduce the mor
general integral
6-2
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RNx ,Ny ,Nz , j~aPPC2!

5~22aP! jE
0

1

duu2 j )
k5x,y,z

~]/]Pk!
Nk

3expF2aPu2H S Ck2Pk2 i
Kk

2aP
D 2J G

3expH 2
Kk

2

4aP
J exp$ iK k~Pk2Pk8!%U

P
k85Pk

, ~18!

whereuP
k85Pk

is applied after the differentiation byPk . Us-

ing the incomplete gamma function for the complex arg
ment

F j~T!5E
0

1

u2 j exp~2Tu2!du, ~19!

the first term ofR0,0,0,j (aPPC2) is given by

R0,0,0,j~T!5~22aP! jF j~T!. ~20!

Then, we may able to use the recursion formulas

R0,0,Nz11,j~aPPC2!52S Cz2Pz2 i
Kz

2aP
DR0,0,Nz , j 11

1NzR0,0,Nz21,j 111 iK zR0,0,Nz , j ,

~21!

R0,Ny11,Nz , j~aPPC2!52S Cy2Py2 i
Ky

2aP
DR0,Ny ,Nz , j 11

1NyR0,Ny21,Nz , j 111 iK yR0,Ny,Nz , j ,

~22!

RNx11,Ny ,Nz , j~aPPC2!52S Cx2Px2 i
Kx

2aP
DRNx ,Ny ,Nz , j 11

1NxRNx21,Ny ,Nz , j 11

1 iK xRNx ,Ny ,Nz , j , ~23!

and the upward recursion relation

F j 11~T!5
~2 j 11!F j~T!2exp~2T!

2T
, ~24!

to obtain RNx ,Ny ,Nz
(T)@5RNx ,Ny ,Nz,0

(T)#. The computa-
tional algorithm and the routine for complex error functio
F0(T) is available@12,13#.

C. Electron-repulsion integrals

By settingu(r1 ,r2) to r 12
21 in Eq. ~11!, the basic integral

of the electron-repulsion integral is expressed by
05670
-

@NxNyNzur 12
21uMxM yMz#5

2p5/2

AaP1aQaPaQ

3RNx ,Mx ,Ny ,My ,Nz ,Mz
~rPQ2!,

~25!

wherer5aPaQ /(aP1aQ), and

PQ25~ P̃x2Q̃x!
21~ P̃y2Q̃y!21~ P̃z2Q̃z!

2, ~26!

Q̃5
aC„RC2~ iKC/2aC!…1aD„RD1~ iKD/2aD!…

aC1aD
.

~27!

The values ofRNx ,Mx ,Ny ,My ,Nz ,Mz
(5RNx ,Mx ,Ny ,My ,Nz ,Mz ,0)

are obtained in the recursion formulas as

RNx11 ,Mx ,Ny ,My ,Nz ,Mz , j~rPQ2!

5S Px2Qx1 i
Kx

2aP
2 i

Lx

2aQ
DRNx ,Mx ,Ny ,My ,Nz ,Mz , j 11

1NxRNx21 ,Mx ,NyMy ,Nz ,Mz , j 11

2MxRNx ,Mx21,Ny ,My ,Nz ,Mz , j 11

1 iK xRNxMx ,Ny ,My ,Nz ,Mz , j , ~28!

RNx ,Mx11 ,Ny ,My ,Nz ,Mz , j~rPQ2!

52S Px2Qx1 i
Kx

2aP
2 i

Lx

2aQ
D

3RNx ,Mx ,Ny ,My ,Nz ,Mz , j 11

2NxRNx21 ,Mx ,NyMy ,Nz ,Mz , j 11

1MxRNx ,Mx21,Ny ,My ,Nz ,Mz , j 11

1 iL xRNxMx ,Ny ,My ,Nz ,Mz , j , ~29!

where R0,0,0,0,Nz11,Mz , j (aPPC2),

R0,0,0,0,Nz ,Mz11,j (aPPC2), R0,0,Ny11,My ,Nz ,Mz , j (aPPC2),

and R0,0,Ny ,My11,Nz ,Mz , j (aPPC2) are given in a similar
manner.

III. INTEGRAL DERIVATIVES

Integral derivatives can be obtained using the analytic
pression of one- and two-electron integrals derived abo
For instance, kinetic-energy integrals are expressed by
second derivative with respect tor x :
6-3
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d2

drx
2
xA5@nx~nx21!~r x2RAx!

nx2212iK Axnx~r x2RAx!
nx21

2$2aP~2nx11!1KAx
2 %~r x2RAx!

nx

24iaP~r x2RAx!
nx1114aP

2 ~r x2RAx!
nx12#

3 )
k5y,z

~r k2RAk!
nkexpF2aAH r2S RA1

iKA

2aA
D J 2G

3expS 2
uKAu2

4aA
D . ~30!

Similarly, the gradients with respect toRAx and KAx are
given by

d

dRAx
xA5@2nx~r x2RAx!

nx212 iK Ax~r x2RAx!
nx

12aP~r x2RAx!
nx11# )

k5y,z
~r k2RAk!

nk

3expF2aAH r2S RA1
iKA

2aA
D J 2GexpS 2

uKAu2

4aA
D

~31!

and

d

dKAx
xA5 i ~r x2RAx!

nx11 )
k5y,z

~r k2RAk!
nk

3expF2aAH r2S RA1
iKA

2aA
D J 2GexpS 2

uKAu2

4aA
D ,

~32!
05670
respectively. The above formulas can be used for ene
derivative expressions in terms of one- and two-electron
tegrals. Other integrals, such as higher-order gradients, m
tiple moments can be derived in a similar manner. We sho
note that the derivatives ofxA with respect tor k andRAk are
not equal as in the pure GTF case.

IV. CONCLUDING REMARKS

In this report, we have dealt with the systematic deriv
tion of atomic integrals for the hybrid GTF-PW basis set
generalizing the McMurchie-Davidson method. Althoug
this type of basis function is not yet common inab initio
studies at present, it is expected to have a wide range
applications in physics and chemistry, such as nonadiab
dynamics of electronic structures@14#, the electron scattering
problems@15#, and electronic band structures in solids@16#.
In particular, the GTF-PW basis set should have great adv
tages for systems in which both localized and delocaliz
electrons exist, such as metal surfaces, conducting polym
etc. Using the present algorithm for the GTF-PW basis se
simulation study on plasma oscillationlike behavior in t
electronic structure of molecules is in progress@17#.
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