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Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions
via the McMurchie-Davidson recursion formula

Masanori Tachikawst and Motoyuki Shiga"
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
2Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute (JAERI), Tokai-mura,
Naka-gun, Ibaraki 319-1195, Japan
(Received 21 May 2001; published 26 October 2001

A convenient formalism is developed for the evaluation of atomic integrals composed of a hybrid Gaussian
type function and plane-wau&TF-PW) basis set, based upon the recursion scheme proposed by McMurchie
and DavidsorL. E. McMurchie and E. R. Davidson, J. Comput. Phg8, 218 (1978] which was originally
for Gaussian type basis functions. We show that revisions of recursion relations in the original article are
necessary in order to allow systematic production of overlap, kinetic energy, nuclear attraction, and electron
repulsion integrals in compact forms. Involving easy calculation of complex incomplete gamma functions, the
recursion relations enable the use of hybrid GTF-PW basis functions with arbitrarily large angular momentum.
This basis function can be applied to the first-principle calculation for solids involving localized electron

orbitals.
DOI: 10.1103/PhysRevE.64.056706 PACS nuni®er02.70—c, 31.15-p
[. INTRODUCTION efficient MD formalism to hybrid GTF-PW basis functions
of the form
For several decades, the Cartesian Gaussian type function

(GTF) has achieved its popularity as a basis function for _ Fo— Ra) ™ expl — aa(r — Ra)2
localized electron orbitals owing to its simplicity in comput- A k:];,[y,z ("= Ra A= an A
ing the atomic integrals within the framework of the linear y K _R
combination of atomic orbitals. Among some convenient expliKa- (r=Ra)}
methods contrived for computing GTF atomic integrals
[1-6], one of the most efficient algorithms has been sug- =k=1;[ , (re—Raw)™
gested by McMurchie and DavidsofMD) [1]. The MD i
scheme has an attractive feature in its recursion relations in iKa)l? |K a2
terms of auxiliary functions, which enables the generation of Xexp —ap) r—| Rat 2an exp — day |’

GTF atomic integrals systematically with arbitrarily large an-
gular momentum. Besides, the MD formula is also practi- @)
cally useful in the evaluation of sophisticated atomic inte-
grals such as two-electron integrals involving [7], and
three-electron integral$8]. For these reasons, the MD
method has been widely used in currelt initio program

where ap gives the Gaussian exponent and (ry,ry,r,),
RA:(RAX!RAleAZ)! and KA:(KAXIKAleAZ) denOte the
electronic Cartesian coordinate space, the center coordinate
of GTF, and the PW vector, respectively. In Edj), we note
packages. _ _ that settingk ,=0 reduces to conventional GTF, while set-
On the other hand, the plane-wa{@W) basis function ting n,=a,=0 corresponds to the PW function.
has been successful for describing delocalized Bloch orbitals |n Sec. II, we describe the way to obtain desired atomic
in the condensed phase, such as periodic crystals and metgitegrals from one- and two-electron basic integrals. As an
lic solids. PW'’s as a basis set have advantages in Simpléxamp|e, we give the expressions of Over|ap, nuclear-
formulas of atomic integrals and its derivatives, andattraction, and electron-repulsion integrals. The recursion
they are suitable for molecular-dynamics calculations. In thigelations for auxiliary functions which is necessary in
context, it is a natural choice to adopt both localized GTFnyclear-attraction and electron-repulsion integrals, are also
and delocalized PW's as basis functions at the same timgnhown. In Sec. Ill, we explain the prescriptions to obtain
[9-11]. Thus, it is encouraging to set up a systematic treattheir derivatives. Finally, in Sec. IV, we give some remarks

ment for the evaluation of atomic orbitals in hybrid GTF- on the applications of the present work to be expected in the
PW’s. future.

The aim of the present report is the generalization of this
II. EXPANSION OF ATOMIC INTEGRALS

*Electronic address: m-tachi@postman.riken.go.jp In this section, we seek convenient formulas for the one-
TElectronic address: shiga@sagar.tokai.jaeri.go.jp electron integral
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|1:f drxa(r)* 6(r) xs(r), )

and the two-electron integral

|2:j JdrlerXA(rl)*XB(rl)a(rler)XC(rZ)*XD(rZ)-
©)

To begin with, let us introduce the product of two basis

functions in Eq.(1),
Xaxe=Eagexpi(Ka-Ry—Kg-Rg)}

x 11

k=x,y,z

(rk—Rap) "™(ry—Rgy) M

X exp{— ap(r—P)%+iK-r},

(4)

where we have definedK=—-K,+Kg, ap=astag,
P=(apRa+ agRg)/ap, and Eag=exp(— aaagRa
—Rg|?ap). Following the procedure similar to MD, we also
introduce the functionr\Nk as anN,th order polynomial of

Mk»

An (Ne— P ap)exp{— ap(r—P)%2+iK-r}

=(al 9P )Nkexp{— ap(r—P)2+iK-r}. (5)
Now, we consider the expansion of
nk+mk
(re—Raw "X(rg—Re) ™= NZO d:lkk'mkANk(rk_ Py;ap).
(6)

Using the nature of

1
(M= RaAn, =NAN -1+ (PeRa Ay + 5= A1,
P
(7

we are able to use the recursion relations to obtain the coef-

.. ny ,m,
f|C|enth'<k “ by

Ay M= (2a,) Tl ™+ (P — Randy ™

Ny N —1
+ (N Ddye (8)
i, ™= (2ap) AT (P Re di ™
+ (N D)dpe ™ (9)

Ny+1°

with the initial conditiond)’=1. Equations(8) and (9) re-
main the same as those defined in the original arfitle
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I1

=Xy,z

[NxNyN,| a]zf dr G(r)k (9l 9P )Nk

xexp{—ap(r—P)%+iK-r}, (10

[NxNyNz| 0|MxMyMz]: f drldl’zﬁ(rl,l‘z)

x [1  (a1P)NK(al 9Qy) M

k=x,y,z
X exp{— ap(r,—P)?
- aQ(rZ_Q)2+ i(K-rg+L-rp)},
11
respectively, where we have defingd=—-Kc+Kp, ag
=actap, andQ=(acRc+apRp)/ag.
A. Overlap integrals

By setting 6(r) to 1 in Eq.(10), the basic integral of the
overlap integral is given by
K2
— H N
4C¥p] ¥4 (IKk) "

o\ 32
[N«NyN,|1]= (—) exp{
@p
(12

We note that since Eq12) depends orN,, the overlap
integrals will need the summation as kg in Eq. (6) (in
contrast to the case of the pure GTF bas&is 0, where only
the terms folN,=0 survive.

11

k=x,y

B. Nuclear-attraction integrals

By setting 6(r) to rgl in Eqg. (10), the basic integral of
the nuclear-attraction integral is expressed by

_1 21 —,
[NJNYN,| rc]=|—|Ry n, n(apPC?), (13
aP X y z
whereC is the nuclear coordinate, and
RNX,Ny,Nz(apﬁz)=(8/ﬂPX)NX(ﬁ/(9Py)Ny
X (9l 9P,)NFo(apPC?), (14)
where
1
FO(T)=f dtexp(—t2T), (15)
0
E2:(’|~:3><_(-:x)2'{'('|5y_cy)2‘l‘(]52_(:2)2, (16
and
~ ar(Ra—(iKA2an))+ ap(Rg+ (I K A/2a
P= A( A ( Al A)) B( B ( Al A)) (17)

CYA+ ap

In order to computeRNX,Ny'NZ for a set of{N,}, we have to
derive a table of aIRNX,Ny,NZ up to maximum angular mo-

Using the relation of Eq(6), we are left with the evaluation ment numberN,+N,+N,. Thus, we introduce the more
of the basic integrals for one- and two-electron integrals asgeneral integral
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RNX,Ny,NZ,j(aPPCZ)

(1 )
=(—2ap)1f duu? (9l 9P )Nk
0 k=x,y,z
K |2
xex;{—aPUZHCk— Pk—|m) H

2
Kk

4C¥p (18)

Pr=Py

X exp‘

where|,3{<=pk is applied after the differentiation by, . Us-

]exp{i Kk(Px—Pu)}

ing the incomplete gamma function for the complex argu-

ment
1
Fi(T)= fo u? exp(—Tu?)du, (19
the first term ofRy g o;(apP C?) is given by
Ro,0,0(T)=(—2ap) Fj(T). (20
Then, we may able to use the recursion formulas
R PCH=—|C,- P i |R
0,0N2+1,j(01P )= 2z Pz~ 2ap 0,0N,,j+1
+NRoon,-1j+1FT1KRoon, j
(21
—, . Ky
RO,Nerl,NZ,j(aPPC )=— Cy_Py_lr‘P RO,Ny,NZ,j+1

+NyRon,-1n, j+1HTKyRon N,
(22)

— K,
RNX+1,Ny,NZ,j(aPPC )== CX_PX_IZT«,:

FNRN, 18y N, 41

+ iKXRNXyNerZvj 1 (23)
and the upward recursion relation
2j+DF(T)—exp—T)
Fiea(T)= : , (24

2T

to obtain RNX,Ny,NZ(T)[:RNX,Ny,NZ,O(T)]- The computa-
tional algorithm and the routine for complex error function
Fo(T) is available[12,13.
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2,n.5/2
\/ap+ aQCYpCYQ

X RNX,MX,Ny,My,NZ,MZ(pPQZ)a

[NxNyNz|r521| I\/lxMyMz] =

(29
wherep=apag/(ap+ag), and
PQ?=(P,—Q%+(Py—Q))%+(P,—Qy)% (20
~ a’c(RC_ (| Kclzac))+ OZD(RD+(i KD/ZQ’D))
Q_ (Xc+ ap )
(27

The Va“'JeS quNX,MX,Ny,M'y,NZ,MZ(:RNX,MX,Ny,My,NZ,MZ,O)
are obtained in the recursion formulas as

RNX+1 ,MX,Ny,My,NZ,MZ,j(P%Z)

Lx
ZCYQ

X .
i

I:)X QX I 2ap

RNX,MX,Ny,My,NZ,MZ,j+l

+NGRN, 1M, N M N M 1

~ MR M- 1Ny My N, M+

FIKGRN M, Ny My N, M (28)
502

RNX,MX+1,Ny,My,NZ,MZ,J(pPQ )

Lx
ZCYQ

X .

2ap

= l:)X_Qx—i_i

X .
RNX,MX,Ny,My,NZ,MZ,JJrl
_NXRNx—l,Mx,NyMy,NZ,MZ,j+1

J’_ .
MuRN, M= 1N My N, M+ 1

FILRN M N My N, M (29

RO,O,O,ONZJrl,MZ,j(aPP_CZ)a
RO,O,O,ONZ,MZ+1,j(aPWZ)- Ro,o,Ny+1,My,NZ,MZ,j(apWZ),
and Ro,o,Ny,My+1,NZ,MZ,j(0‘PP_C2) are given in a similar
manner.

where

Ill. INTEGRAL DERIVATIVES

Integral derivatives can be obtained using the analytic ex-
pression of one- and two-electron integrals derived above.
For instance, kinetic-energy integrals are expressed by the
second derivative with respect tQ:

C. Electron-repulsion integrals

By setting6(r,,r,) to r;* in Eq. (11), the basic integral
of the electron-repulsion integral is expressed by
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d2

FXA: [Ny(Ny=1)(ry— RAx)nxiZ—i_ 2iK axny (1 — RAx)nxil
X

—{2ap(2n+ 1)+ K2 (ry— Ray)™

RA )nx+ 2]

1Kp
J’__
Ra ZaA)]

«— Ra)™ 1+ 4ad(ry

RAk keXF{ aA[ r—

|Kal?
4CYA ’

< 11«

k=y,z

Xexp(_

Similarly, the gradients with respect t®,, and K,, are
given by

(30

d .
_XA:[_nx(rx_RAx)nx_ _|KA><(|'><_RA><)n><
dRayx
+2ap(r— RAX>“X+1]ng (ri—Ra)"™
iIKa |Kal?
Xexr{—aA[ RA+271A” exr{— da,
(31
and
d H ny+1
T Xa= (I = Ra)™ H —Rap)™
dKAx k=y,z
Ka [Kal?
xexp{—aA[ RAJFE)] exy{— Nk

(32
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respectively. The above formulas can be used for energy
derivative expressions in terms of one- and two-electron in-
tegrals. Other integrals, such as higher-order gradients, mul-
tiple moments can be derived in a similar manner. We should
note that the derivatives gf, with respect ta, andR,, are

not equal as in the pure GTF case.

IV. CONCLUDING REMARKS

In this report, we have dealt with the systematic deriva-
tion of atomic integrals for the hybrid GTF-PW basis set by
generalizing the McMurchie-Davidson method. Although
this type of basis function is not yet common ab initio
studies at present, it is expected to have a wide range of
applications in physics and chemistry, such as nonadiabatic
dynamics of electronic structurg€$4], the electron scattering
problems[15], and electronic band structures in sol[d$].

In particular, the GTF-PW basis set should have great advan-
tages for systems in which both localized and delocalized
electrons exist, such as metal surfaces, conducting polymers,
etc. Using the present algorithm for the GTF-PW basis set, a
simulation study on plasma oscillationlike behavior in the
electronic structure of molecules is in progr¢$g).
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